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Background: Understanding the characteristics of intrinsic connectivity networks (ICNs) in terms of both glucose metabolism and
functional connectivity (FC) is important for revealing cognitive aging and neurodegeneration, but the relationships between these
two aspects during aging has not been well established in older adults.

Objective: This study is to assess the relationship between age-related glucose metabolism and FC in key ICNs, and their direct or
indirect effects on cognitive deficits in older adults.

Methods: We estimated the individual-level standard uptake value ratio (SUVr) and FC of eleven ICNs in 59 cognitively unimpaired
older adults, then analyzed the associations of SUVr and FC of each ICN and their relationships with cognitive performance.
Results: The results showed both the SUVr and FC in the posterior default mode network (pDMN) had a significant decline with age,
and the association between them was also significant. Moreover, both decline of metabolism and FC in the pDMN were significantly
correlated with executive function decline. Finally, mediation analysis revealed the glucose metabolism mediated the FC decline with
age and FC mediated the executive function deficits.

Conclusions: Our findings indicated that covariance between glucose metabolism and FC in the pDMN is one of the main routes that

contributes to age-related executive function decline.

Key words: brain aging; executive function; functional connectivity; glucose metabolism; posterior default mode network.

Introduction

Aging is accompanied by brain function decline as
well as neuronal degeneration. Using fluorine-18-
fluorodeoxyglucose positron emission tomography
(*8F-FDG PET), studies in normal healthy individuals
have consistently shown decreased cerebral glucose
metabolism with increasing age, with differential effects
across brain regions (Kalpouzos et al. 2009; Hsieh et al.
2012). The regions that are most affected by aging form
a spatial pattern including the cingulate gyrus and
frontal areas (Chetelat et al. 2013). Such a spatial pattern
is potentially a sensitive biomarker for discriminating
normal aging from Alzheimer’s disease, as well as from
other neurodegenerative diseases (Mosconi 2005). On the
other hand, recent resting-state functional magnetic

resonance imaging (fMRI) researches have provided
ample evidence that aging and neurodegeneration are
also related to the breakdown of functional networks.
Age-related functional connectivity (FC) disruptions
have been specifically reported in multiple intrinsic
connectivity networks (ICNs) in the brain (Laird et al.
2011; Ferreira and Busatto 2013). These ICNs typically
integrate information across a wide range of tasks
and across multiple brain functions (Damoiseaux et al.
2008; Zhang et al. 2014). Thus, to further understand
the processes underlying age-related brain changes,
alterations in the FC in some key brain networks
should also be explored in combination with cerebral
metabolism decline in the context of age variation
(Ferreira and Busatto 2013).
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Understanding the neuroimaging characteristics of
ICNs in terms of both glucose metabolism and FC is
important for revealing brain aging. A mechanistic view
linking FC to the hypometabolism, however, has been
lacking so far. A few multimodal imaging studies using
FDG-PET and resting-state fMRI approached the question
of whether local FC of ICNs is correlated with their local
levels of glucose metabolism. These studies showed that
the correlation was discordant in different networks and
changed with aging as well as disease stages. Among
previous studies, there seems to be a stable result that
the posterior default mode network (pDMN) (include
cingulate gyrus and precuneus [PCu]) areas unite the
2 dimensions signally. Firstly, the pDMN are the hub
regions for brain information communication and neural
integration (van den Heuvel et al. 2013). Frequent and
massive information operations require high energy
consumption. Other the other hand, areas of this network
show the highest level of glucose use among the whole
cerebral cortex in humans (Gusnard and Raichle 2001).
The phenomenon that pDMN had the highest extent of
both concurrent energy utilization and neuronal activity
(Shokri-Kojori et al. 2019), rendered these hub regions
more vulnerable to neurodegenerative conditions such
as Alzheimer’s disease (Tomasi et al. 2013). Some
other previous studies (Arenaza-Urquijo et al. 2013;
Chetelat et al. 2013; Wagner et al. 2016; Verger et al.
2017) have indicated that local metabolic dysfunction
may be due to or may lead to disruption in FC with
distant brain regions. It is likely that glucose metabolism
disturbance may impact myelin integrity or other
components that lead to dysfunction in connected brain
regions (Bartzokis 2004). Measures of FC and glucose
metabolism are usually not characterized as processes,
but they may reflect relevant physiological processes,
assessing the relationship between them is a stepping-
stone to a better understanding of the physiological
mechanisms underlying age-related metabolic decline
and neurodegeneration.

However, the relationships between aging, energy
metabolism, functional-level network properties and
cognitive performances have not been widely and sys-
tematically evaluated (Chetelat et al. 2013). One recent
study assessed the relationship between age-related
metabolism decrease and networks segregation changes
in sensorimotor networks (Manza et al. 2020), but there
was little study so far that explored the interaction
effects of aging on glucose energy metabolism and
network FC changes in DMN, which were mentioned
above having closer relationships to cognitive aging and
neurodegenerative diseases (Buckner and Krienen 2013;
Douaud et al. 2014), and their contribution to cognitive
decline in older individuals. The objective of the present
study was to assess the relationship between age-related
glucose metabolism and FC in key ICNs like pDMN, and
the direct or indirect effects on cognitive deficits in older
adults.

Materials and methods
Participants

All participants enrolled in this study were from the
Beijing Aging Brain Rejuvenation Initiative (BABRI),
which is an ongoing community-based cohort study
in China focusing on dementia prevention and early
detection of cognitive impairment (Yang et al. 2021).
Participants were urban nondemented older individuals
living in local communities in Beijing and were all right-
handed native Chinese speakers. The inclusion criteria
were (i) being at least 55 years old; (ii) no dementia
or probable dementia according to the DSM-IV-TR
(American Psychiatric Association 2000); (iii) no history
of neurological, psychiatric, or systemic illnesses known
toinfluence cerebral function, including serious vascular
diseases, head trauma, tumor, current depression,
alcoholism, and epilepsy; and (iv) no prior history of
taking psychoactive medications. The experiments were
undertaken with the understanding and written consent
of each subject and with the Ethics Committee and
Institutional Review Board of Beijing Normal University’s
approval (ICBIR_A_0041_002.02). During the time of this
investigation, we identified 59 BABRI participants (31
males and 28 females) whose 8F-FDG PET and resting-
state fMRI data were available for the purpose of our
study. The interval between ®F-FDG PET data and MRI
data acquisition was no more than 3 months, with an
average interval of <1 month.

Neuropsychological testing

All 59 participants received a widely used screening
test for general cognitive ability and several classic
neuropsychological tests, including the Mini-Mental
State Examination (MMSE), and some tests that assess
specific cognitive functions in aging research: (i) the
Auditory Verbal Learning Test (AVLT), (ii) Boston Naming
Test (BNT), (iii) Clock-Drawing Test (CDT), (iv) Category
Verbal Fluency Test (CVFT), (v) Digit Span, (vi) Rey-
Osterrieth Complex Figure (ROCF) delayed recall and
copy test, (vii) Symbol Digit Modifying Test (SDMT), (viii)
Stroop Color and Word Test, and (ix) Trail Making Test
(TMT). The specific neuropsychological test procedures
have been described in our previous work (Wang
et al. 2013; Lu et al. 2020). The neuropsychological
tests of each participant were operated in their living
communities by experienced graduate students no more
than 1 week before or after he or she was invited for the
MRI scan.

Imaging data acquisition and preprocessing

All participants underwent an ®F-FDG PET scan using
a Biograph 64 TruePoint TrueV PET/CT system (Siemens
Medical Solutions, Germany) at Peking Union Medical
College Hospital, Peking Union Medical College (Beijing,
China). All participants started the PET scan 40-
60 minutes after the intravenous injection of 5.55 MBq/kg
(0.15 mCi/kg) BF-FDG produced using an RDS-111



Cyclotron (CTI, US) after participants had fasted for
at least 4 hours and their blood glucose level was
ensured not to exceed the normal limit (6.4 mmol/L).
All participants were required to close their eyes after
tracer injection to eliminate an unwanted elevated
uptake of FDG into the occipital lobe. The scan lasted
10 minutes. 8F-FDG PET images were acquired with 148
axial slides with an interslice spacing of 3mm, and the
camera resolution is 4 mm (Yuan et al. 2016). PET images
were visually read by 2 experienced nuclear medicine
physicians.

For the MRI data, all participants were scanned on a
3.0 T Siemens scanner during a single session, wherein
high-resolution T1-weighted structural MRIs and resting-
state functional scans were obtained. Resting-state data
were collected using an echo-planar imaging sequence
that consisted of an echo time (TE)=30 ms, repetition
time (TR) = 2000 ms, flip angle =90°, 33 axial slices, slice
thickness=3.5 mm, acquisition matrix =64 x 64, and
field of view (FOV) =200 x 200 mm?. During the single-
run resting acquisition, participants were instructed to
stay awake, relax with their eyes closed, and remain
as motionless as possible. Acquisition in the resting
state lasted for 8 minutes, and 240 image volumes
were obtained. T1-weighted, sagittal 3D magnetization
prepared rapid gradient echo sequences that covered
the entire brain (176 sagittal slices, TR=1900 ms,
TE=3.44 ms, slice thickness=1 mm, flip angle=9°,
inversion time=900 ms, FOV =256 x 256 mm?, and
acquisition matrix =256 x 256) were also collected.

18F-FDG PET data were preprocessed (Chen et al. 2009)
with Statistical Parametric Mapping software (SPM12,
http://www.fil.ion.ucl.ac.uk/spm). Briefly, automated
segmentation and normalization procedures (Good et al.
2001) were applied to each subject’s MRI to exclude non-
brain tissue and to generate maps of smoothed gray mat-
ter density after spatial deformation into the Montreal
Neurological Institute (MNI) template space. Automated
algorithms were applied to each subject’'s PET image,
coregistering to his/her T1 MRI and warped into the
MNI template space using the normalization parameters
derived from the MRI segmentation and normalization
procedures. The PET images were then resampled to the
same slice, matrix, and voxel size of the MNI template
space, with a 91 x 109 x 91 data matrix and a voxel size
of 2x2x2 mm?. Finally, PET images were smoothed
further with a 6-mm full width at half maximum (FWHM)
Gaussian kernel. The standard uptake value ratio (SUVr)
of each voxel was computed by normalizing each
participant’s ®F-FDG PET data with the subject’s mean
FDG uptake value of cerebellar vermis (Barthel et al.
2015) (Anatomical Automatic Labeling (AAL) template
regions number from 109 to 116 in the MNI template
space).

The preprocessing of the resting-state fMRI data was
carried out using SPM12 and Data Processing Assistant
for Resting-State fMRI (Chao Gan and Yu Feng 2010). The
steps of resting-state fMRI data preprocessing included
the conversion of the Digital Imaging and Communica-
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tions in Medicine (DICOM) data to Neuroimaging Infor-
matics Technology Initiative (NIFTI) images; the removal
of the first 10 time points from each patient’s data; slice
timing correction; realignment to the middle image; the
regression of nuisance covariates, such as head motion,
white matter signals, and cerebrospinal fluid (CSF) sig-
nals; spatial normalization by Diffeomorphic Anatom-
ical Registration Through Exponentiated Lie Algebra
(DARTEL); spatial smoothing with a 6-mm Full Width at
Half Maxima (FWHM) Gaussian kernel; linear detrend
and 0.01-0.08-Hz bandpass filtering.

Imaging data analysis

The main analysis procedure is shown in Supplementary
Fig. 1. We performed independent component analysis
(ICA) using the GIFT v4.0a software package (Calhoun
et al. 2001) to decompose all of the resting-state data
into 20 components following the practice described in a
previous study (Jones et al. 2016). Principal components
analysis is used as a technique to reduce the dimensions.
Two data reduction steps are used for multisubject anal-
ysis. We used informax ICA algorithms as it maximizes
the information transfer from the input to the output of a
network. ICNs were identified with a template-matching
procedure against a set of previously defined network
maps (Greicius et al. 2004; Shirer et al. 2012). Spatial-
temporal regression as a back-reconstruction method
was used to acquire the individual-level FC strength of
each network (Filippini et al. 2009; Smith et al. 2014;
Elman et al. 2016). First, all group-level ICN spatial maps
derived from all the participants (59 participants) were
entered as regressors in a linear regression against each
subject’s preprocessed 4D functional dataset (the spa-
tial regression procedure). This step resulted in a set of
subject-specific time courses for each group-level spatial
map, reflecting the mean time course of each compo-
nent. These time courses were then variance-normalized
to test for differences in the ICN spatial extent and ampli-
tude. Next, these time courses were entered as regressors
against the same 4D functional datasets (the tempo-
ral regression procedure) to produce a set of subject-
specific spatial maps corresponding to each group-level
ICN. The Z value of each voxel in these spatial maps
represents the degree to which the signal fluctuation of
this voxel is correlated with a given group-level ICN’s
mean time course. By including all 20 ICNs in both stages
of the dual regression, the resulting time courses and
spatial maps are partial regression estimates, in which
the shared variance with other components (both physio-
logically plausible and artifactually related) is controlled.
Then 11 networks of interest (Fig. 1A) at the group level
were selected by matching a “resting state network (RSN)
template maps” (Shirer et al. 2012) accompanied with
visually verification (Supplementary Table 1), including
the auditory network (AN), primary visual network (pVN),
higher visual network (hVN), basal ganglia network (BG),
anterior default mode network (aDMN), pDMN (Jones
et al. 2016), lateral somatomotor network (ISMN), medial
somatomotor network (mSMN), salience network (SN),
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Fig. 1. Glucose metabolism and FC patterns and age-related changes of these 2 values in 11 ICNs. A) Eleven networks of interest that best matched the
RSNs template maps. B) Glucose metabolism and FC patterns in each ICN. C) Age effects of FC and SUVr values in each ICN. The color bars represented
the R? value of age effect on FC or SUVT of ICNs. Dotted lines represented the average R? values of FC and SUVr among all the 11 ICNs. The ICNs that
both showed significant decline with age in SUVr and FC values were aDMN, BG, LECN, pDMN, and PN.

left executive control network (IECN), and right executive
control network (rECN). We made 11 corresponding bina-
rized masks based on the chosen networks with a z-score
threshold at 1.0 for further analysis.

The within-subsystem FC of each 11 network in each
subject was estimated by extracting the mean value
from the corresponding scaled spatial maps produced
from the spatial-temporal regression procedure within
the corresponding binarized masks mentioned above. As
previous studies have verified the spatial relationship
between glucose metabolism and resting-state fMRI
signal (Shah et al. 2016; Jiao et al. 2019), and to make
the FDG-SUVr values and FC values comparable in the
same brain region, the approach of extracting FDG-
SUVTr values from binarized maps derived from resting-
state fMRI data was adopted. The mean FDG-SUVr
values was extracted by employing ICN masks from
fMRI data maps on the FDG-SUVr PET imaging maps
of each subject. Finally, both the FC strength and glucose
metabolism information of each ICN were acquired for
each participant.

Statistical analysis

One-way analysis of variance was executed to compare
the strength of glucose metabolism and FC among ICNs,
The linear regression was performed to acquire the age
effects of glucose metabolism and FC in each ICN. The
full Pearson’s correlations between the FC strength and
the SUVr value in each ICN, as well as between neu-
roimaging characteristics and multidomain neuropsy-
chological tests were calculated, and partial Pearson’s
correlations were also investigated adjusting for age, gen-
der, and education as covariates. False Discovery Rates
(FDR) multiple testing corrections were used to reduce
the probability of false positives.

The mediation analyses were performed using Model 4
and Model 6 in the Hayes Process macro with SPSS (Hayes
2013) (http://www.athayes.com/) with 5000 bootstrapped

resamples. In the present study, we explored 3 kinds of
mediation model. In the first model, age was the inde-
pendent variable, cognitive measures that significantly
correlated with age were the dependent variable, and
the neuroimaging characteristics, which were correlated
with both age and cognition, were the mediating variable.
This analysis allowed us to determine whether the asso-
ciation between age and cognitive performance is medi-
ated through the effect of age on neuroimaging charac-
teristics (i.e. an indirect effect). In the second model, age
was the independent variable, and the network FC and
network SUVr were either the dependent variable or the
mediating variable. This analysis allowed us to determine
whether the association between age and network FC is
mediated through the effect of age on network glucose
metabolism or whether the association between age and
glucose metabolism is mediated through the effect of age
on network FC. In the third model, age was the inde-
pendent variable, cognitive measure significantly cor-
related with age was the dependent variable, and the
network FC and network SUVr were the mediating vari-
ables. Since there is no strong theoretical hypothesis to
remind us which is the upstream affecting factor, we did
bidirectional serial mediation analysis, and even paral-
lel mediation analysis here to certify which mediation
model is best suited to the data. These analyses were
to explore more complicated relationships among age-
related metabolism, the FC decline of a network, and
executive function impairment. The threshold for statis-
tical significance of path coefficients was set to P < 0.05.

Results

Participants’ demographics and cognition
characteristics

The participants’ demographics and cognition charac-
teristics of the study can be found in Table 1. They were
on average 71.25+7.82 years old. A total of 47% of the
elders were female and the whole average education
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Table 1. Demographic information and cognitive performance.
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Mean =+ SD (n=59)

Age effects

Blage) R? F P (age)
Age 71.25+7.816 — — — —
Gender(F/M) 28/31 — — — —
Education 11.87 £4.131 — — — —
General mental status
MMSE 26.78 £3.222 —0.318 0.101 6.419 0.014
Memory function
AVLT(N1-N5) 29.64+12.204 —0.354 0.125 8.155 0.006
AVLT(NS) 5.48+£3.411 —0.341 0.116 7.513 0.008
ROCF-delay recall 13.80+8.541 —0.299 0.090 5.604 0.021
Digit Span 11.61+£1.965 —0.102 0.010 0.603 0.441
Processing speed
SDMT 29.55+£12.115 —0.324 0.105 6.669 0.012
TMT-A time 71.78 £34.59 0.247 0.061 3.688 0.060
Executive function
TMT-B time 202.32+£93.375 0.302 0.091 5.740 0.020
Stroop C-B time 40.67 +£26.975 0.245 0.060 3.638 0.062
Visuospatial processing
CDT 24.72 £4.487 —0.206 0.042 2.518 0.118
ROCF-Copy 32.37£5.657 0.000 0.000 0.000 0.999
Language ability
CVFT 43.69+13.167 —0.116 0.014 0.783 0.380
BNT 23.76£3.816 —0.099 0.010 0.565 0.455

AVLT, a total score of 5 times reported; Stroop(C-B) time = Stroop Card and Word test(C-B) time.

level was 11.87 £4.13 years. In terms of performance on
neuropsychological tests, there were significant declines
in multiple cognitive domains with age, including the
MMSE(R?=0.101, P=0.014), AVLT (N1-N5) (R?=0.125,
P=0.006), AVLT (N5) (R?=0.116, P=0.008), ROCF-delay
recall(R?=0.090, P=0.021), SDMT(R?=0.105, P=0.012),
and TMT-B time(R? =0.091, P=0.020).

Strength and aging patterns of glucose
metabolism and FC in each ICN
Generally, the group mean level of ¥F-FDG SUVr and
FC strength showed a consistent pattern among ICNs:
higher FC value tended to correspond with higher SUVT.
For the FC aspect, the pDMN showed the highest FC
level and mSMN showed the lowest level. In comparison,
for the glucose metabolism aspect, the region that had
the highest SUVr value was also the pDMN, well the
BG showed the lowest SUVr level (Table 2; Fig. 1B). In
addition, the variance of FC was larger than that of SUVT.
Among all the 11 ICNs, the ®F-FDG SUVr decreases
significantly with age in the AN (r=-0.495, df=58,
P=7.718E-15), BG (r=—0.540, df =58, P=4.663E-14), aDMN
(r=-0.458, df=58, P=2.759E-15), pDMN (r=-—0.394,
df=58, P=0.002), IECN (r=-0.425, df=58, P=0.001),
TECN (r=0.342, df=58, P=0.008), and hVN (r=-0.333,
df=58, P=0.010). The aging effect of the SUVr in the
aDMN(q(FDR) :3035E-14), AN(q(FDR) :849E-14), BG(q(FDR)
=5.129E-13), 1ECN(q(pr =0.003), pDMN(qpr)=0.004),
TECN (qpr) =0.015), as well as hVN (qpgr) =0.016) were
still significant after FDR multiple testing correction.
Meanwhile, significant age effects were observed in
the FC of the aDMN (r=-0.529, df=58, P=2.364E-12),

pDMN (r=-0.263, df=58, P=0.045), BG (r=-0.341,
df=58, P=0.008), hVN (r=-0.303, df=58, P=0.020),
SMN (r=-0.307, df=58, P=0.018), and 1ECN (r=-0.276,
df=58, P=0.035). Only the aging effects of FC in the
aDMN (q(pr) =2.6E-11) and BG (qpr) =0.044) were still
significant after FDR correction. Taken together, the ICNs
that both showed significant decline in SUVr and FC
with age were the aDMN, BG, IECN, pDMN, and hVN
before correction, and only the results of aDMN and
BG could survive after FDR correction. (Table 2; Fig. 1C;
Supplementary Fig. 2).

Correlations among aging, glucose metabolism,
and FC of each ICN, and cognitive function

The Pearson’s correlation coefficient between the SUVr
and FC was computed in each ICN, the results showed
only in the pDMN the correlation coefficient was signifi-
cant (r=0.345, df =58, P=0.008). By computing the partial
correlation between the SUVr and FC in these ICNs after
adjusting for age, gender, and education, the correla-
tion coefficient between the SUVr and FC in the pDMN
network was still significant (r=0.282, df =58, P=0.035),
but these results could not survive after FDR correction
(Table 2; Fig. 2A).

The results of the correlation analysis showed that the
SUVr value of the pDMN was significantly correlated
with scores of several neuropsychological testing,
including those testing general cognitive function
(MMSE, r=0.423, df=58, P=0.001), memory function
(AVLT[N1-N5], r=0.391, df=58 P=0.002; AVLT[NS],
r=0.413, df=58, P=0.001), processing speed (SDMT,
r=0.323, df =58, P=0.013; TMT-A time, r=0.297, df =58,
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Fig. 2. Correlations among age, glucose metabolism and FC, and cognitive function. A) The partial correlation matrix between FC and SUVr combinations
among ICNs. B) Some correlations among age, SUVr of pDMN, FC of pDMN, TMT-B time. Both SUVr and FC in pDMN declined significantly with age. Both
SUVr and FC in pDMN were significantly correlated with TMT-B time after controlling age, gender, and education as coviariates.

P=0.022), executive function (TMT-B time, r=-0.320,
df=58, P=0.014), visuospatial processing (ROCF-Copy,
r=0.295, df=58, P=0.024), and language ability (CVFT,
r=0.322,df=58,P=0.013), all of these could pass the FDR
correction. In comparison, the FC value of the pDMN was
significantly correlated with fewer cognitive tests, mainly
included tests on general cognitive function (MMSE,
r=0.284, df=58, P=0.029), processing speed (SDMT,
r=0.281, df=58, P=0.031; TMT-A time, r=—0.283, df =58,
P=0.030), executive function (TMT-B time, r=-0.328,
df=58, P=0.011), visuospatial processing (ROCF-Copy,
r=0.370, df=58, P=0.004), and language ability (BNT,
r=0.384, df =58, P=0.003); only TMT-B time, ROCF-Copy,
and BNT could pass the FDR correction. The tests that
showed significantly related to both SUVr and FC values
of the pDMN were SDMT, TMT-A time, TMT-B time, and
ROCF-Copy. When we calculated the partial correlation
controlled with variables like age, gender, and education,
the tests that showed both significantly partially related
to SUVr and FC values of the pDMN left TMT-B time
and ROCF-Copy. However, only the TMT-B time showed
a significant difference with age (r=-0.302, df=58,
P=0.020) (Table 3; Fig. 2B).

Mediation effects of glucose metabolism and FC
in pDMN on executive function decline during
aging

Noticing the significant correlation between aging and
executive function (TMT-B time), as well as the signif-
icant correlations between executive function and the
glucose metabolism and FC in the pDMN, a mediation
model was built to determine whether the influence
of aging on executive function decline is mediated by
the pDMN'’s FC or its glucose metabolism. As shown
in Fig. 3A, this mediation model indicated that FC of
pDMN mediated the effect of aging on executive func-
tion. We did not find a similar significant mediation
effect of the glucose metabolism on executive function,

as the B path (mediator to outcome) was not signifi-
cant (8=-0.24, P=0.079, Supplementary Fig. 3A), and
the bootstrap results also indicated that the mediation
effect of the glucose metabolism of pDMN on executive
function could not be supported by our data (indirect
effect=0.091, bootstrapped SE=0.054, 95% confidence
interval [CI]=[-0.039, 0.179]).

In another mediation model, age was set as the inde-
pendent variable, FC of pDMN as the dependent variable
and the glucose metabolism of pDMN as the mediating
variable (Fig. 3B). This mediation model indicated that
the glucose metabolism of pDMN did completely medi-
ate the effect of age on FC of pDMN. When switching
the dependent and mediating variables, such mediation
effect of FC of pDMN on the association between age and
the glucose metabolism of pDMN was partial (c': 8=0.31,
P=0.015, Supplementary Fig. 3B).

Based on the abovementioned model results, a third
model was further constructed to explore the complex
mediating effects of glucose metabolism and FC of
PDMN on the association between age and executive
function decline. The models shown in Fig. 3C and
D could present a clear picture that the association
between age and executive function was mediated by
FC of pDMN, whereas the effect of age on FC of pDMN is
further mediated by the glucose metabolism of pDMN.
Finally, serial mediation analysis revealed age-related
executive function deficits were mediated by glucose
metabolism and FC of pDMN serially, with glucose
metabolism affecting FC first. We also tested whether
FC of pDMN could be a mediator at the effect of the
glucose metabolism of pDMN on executive function. The
results showed that this model could not be accepted
because of the nonsignificant path coefficients from
the SUVr(pDMN) to TMT-B time (8=-0.18, P=0.186,
Supplementary Fig. 3C), and the bootstrap results also
confirmed that the mediation effect of the glucose
metabolism of pDMN could not be supported by the
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Fig. 3. The mediation analysis models. A) The model considering SUVr within pDMN as a mediating factor between age and TMT-B time. B) The model
considering SUVr(pDMN) as a mediating factor between age and FC(pDMN). C) The integration serial mediation model. D) The modified serial mediation
model that removed the nonsignificant paths by and a,. The path coefficients are shown beside each path. g: the standardized regression weight of

each path. *: P <0.05; **: P <0.01; ***: P <0.001.

data (indirect effect=-0.081, bootstrapped SE=0.056,
95% CI=[-0.204, 0.007]). We finally tested the parallel
mediating type model (Supplementary Fig. 3D); the
results showed that this model could not be accepted
neither, because the nonsignificant path coefficients
from both the SUVr(pDMN) and FC(pDMN) to TMT-
B time.

Discussion

Using multimodal data, the present study aimed to
provide a comprehensive overview of the links between
age-related metabolism decline and FC differences in
some key ICNs in older adults. The results showed that
the metabolic rate decreased with age predominantly
in the AN, BG, hVN, aDMN, pDMN, and bilateral ECN.
These metabolic differences were significantly related to
cognitive performance, especially memory and executive
function. Meanwhile, lower FC of the BG, hVN, aDMN,
pDMN, and left ECN was also related to age. By computing
the Pearson’s correlation coefficient between the SUVr
and FC in these 5 abovementioned ICNs that showed
significant age-related decline in both brain metabolism
and FC; only the SUVr and FC of pDMN showed a
significant correlation coefficient between each other.
Furthermore, mediation analysis suggested that age-
related executive function deficits were mediated by
glucose metabolism and FC of pDMN serially, with
glucose metabolism affecting FC first.

During aging process, both metabolism and FC
became lower in the key ICNs, including the BG, hVN,
aDMN, pDMN, and 1ECN. Most of these ICNs belong to

association regions (Huntenburg et al. 2018). Our study
offers a tentative comparison of the effects of age on
these 2 different neuroimaging modalities in older adults.
Compared with other ICNs, metabolism in the BG
network is most significantly negatively related to age,
which is consistent with previous studies (Goble et al.
2012; Brown et al. 2014). The BG network plays a key role
in behavior switching (Cameron et al. 2010), movement
control (Hikosaka et al. 2000), and working memory
regulation (Schroll and Hamker 2013). The metabolism
of the DMN (aDMN and pDMN) and ECN (IECN and rECN)
also showed a significant negative relationship with age
(Moeller et al. 1996; Willis et al. 2002). The DMN and ECN
are considered important ICNs that are vulnerable to
functional deficits in aging and dementia (Leech et al.
2011).

Previous studies have documented that the DMN
shows a strong correspondence between FC and meta-
bolism (Passow et al. 2015). By using ICA analysis,
multiple components, roughly at least 2 components
(Damoiseaux et al. 2006; Buckner and DiNicola 2019), of
the DMN could be identified. The anterior and posterior
parts of the DMN have been proven to have different
characteristics in lots of previous studies (Laird et al.
2011; Buckner and DiNicola 2019). In our research, FC was
significantly positively related to brain metabolism only
in the pDMN, suggesting that metabolism and FC of this
ICN showed the most similar spatial pattern (Tahmasian
et al. 2017), which is in line with the findings of previous
reports (Shokri-Kojori et al. 2019). The pDMN has been
suggested to be the “core node” of the DMN (Utevsky et al.
2014), which plays a very important role in brain aging.
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Table 3. Correlations between cognitive performance with FC and SUVr of pDMN.

KaiXuetal |

Neuropsychological Correlation with FC Partial correlation with FC Correlation with SUVr Partial correlation with SUVr
tests

r P r P r P r P
MMSE 0.284 0.029 0.254 0.059 0.423 0.0012 0.379 0.004?
AVLT(N1-N5) 0.161 0.225 0.108 0.429 0.391 0.0022 0.292 0.029
AVLT(NS5) 0.200 0.128 0.152 0.263 0.413 0.0012 0.323 0.015
ROCF-delay recall 0.227 0.084 0.151 0.266 0.231 0.078 0.140 0.302
Digit Span 0.014 0.918 0.025 0.854 0.032 0.812 0.023 0.865
SDMT 0.281 0.031 0.252 0.255 0.323 0.0132 0.255 0.058
TMT-A time —0.283 0.030 -0.225 0.096 —0.297 0.0222 —0.252 0.061
TMT-B time —0.328 0.0112 —0.263 0.049 —0.320 0.0142 —0.268 0.046
Stroop C-B time 0.149 0.260 0.221 0.101 —0.061 0.649 0.051 0.706
CDT —0.003 0.984 —0.066 0.631 0.077 0.563 0.003 0.984
ROCF-Copy 0.372 0.004? 0.420 0.0012 0.295 0.0242 0.343 0.010
CVFT 0.192 0.145 0.167 0.219 0.322 0.0132 0.333 0.012
BNT 0.384 0.0032 0.375 0.0052 0.152 0.252 0.201 0.137

Note: Partial correlations of FC and SUVr of pDMN with neuropsychological tests were controlled with variables like age, gender, and education. 2Still

significant after FDR correction.

alterations in the pDMN may be especially important
for understanding age-related cognitive decline. The
findings may provide valuable support for future studies
exploring causality between age-related metabolism
and FC changes. The findings showing alterations in
metabolism and FC that differ significantly throughout
aging may motivate the exploration of these effects in
further investigations of biomarkers and mechanisms
important in brain aging.

Supplementary material

Supplementary material is available at Cerebral Cortex
online.
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